Thursday, 29 November 2012

Mathematical Discoveries - Archimedes Screw

The discovery of the Archimedes Screw:


    The Archimedes screw can raise water efficiently.

     A large part of Archimedes' work in engineering arose from fulfilling the needs of his home city of Syracuse. The Greek writer Athenaeus of Naucratis described how King Hiero II commissioned Archimedes to design a huge ship, the Syracusia, which could be used for luxury travel, carrying supplies, and as a naval warship. The Syracusia is said to have been the largest ship built in classical antiquity. According to Athenaeus, it was capable of carrying 600 people and included garden decorations, a gymnasium and a temple dedicated to the goddess Aphrodite among its facilities.
    
     Since a ship of this size would leak a considerable amount of water through the hull, the Archimedes screw was purportedly developed in order to remove the bilge water. Archimedes' machine was a device with a revolving screw-shaped blade inside a cylinder. It was turned by hand, and could also be used to transfer water from a low-lying body of water into irrigation canals. The Archimedes screw is still in use today for pumping liquids and granulated solids such as coal and grain. The Archimedes screw described in Roman times by Vitruvius may have been an improvement on a screw pump that was used to irrigate the Hanging Gardens of Babylon. The world's first seagoing steamship with a screw propeller was the SS Archimedes, which was launched in 1839 and named in honour of Archimedes and his work on the screw.

     Archimedes' screw consists of a screw (a helical surface surrounding a central cylindrical shaft) inside a hollow pipe. The screw is turned usually by a windmill or by manual labour. As the shaft turns, the bottom end scoops up a volume of water. This water will slide up in the spiral tube, until it finally pours out from the top of the tube and feeds the irrigation systems. The screw was used mostly for draining water out of mines or other areas of low lying water.

     The contact surface between the screw and the pipe does not need to be perfectly watertight, as long as the amount of water being scooped at each turn is large compared to the amount of water leaking out of each section of the screw per turn. Water that leaks from one section leaks into the next lower one, so that a sort of mechanical equilibrium is achieved in use.

No comments:

Post a Comment